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In human functional magnetic resonance imaging (fMRI), a characteristic pattern of frontal and parietal
activity is produced by many different cognitive demands. Although frontoparietal cortex has been shown to
represent a variety of task features in different contexts, little is known about detailed representation of
different task features within and across different regions. We used multi-voxel pattern analysis (MVPA) of
human fMRI data to assess the representational content of frontoparietal cortex in a simple stimulus–
response task. Stimulus–response mapping rule was the most strongly represented task feature, significantly
coded in a lateral frontal region surrounding the inferior frontal sulcus, a more ventral region including the
anterior insula/frontal operculum, and the intraparietal sulcus. Next strongest was coding of the instruction
cue (screen color) indicating which rule should be applied. Coding of individual stimuli and responses was
weaker, approaching significance in a subset of regions. In line with recent single unit data, the results show
a broad representation of task-relevant information across human frontoparietal cortex, with strong
representation of a general rule or cognitive context, and weaker coding of individual stimulus/response
instances.
.uk (A. Woolgar).
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Introduction

Frontoparietal cortex is important in diverse forms of behavior. In
human studies using functional magnetic resonance imaging (fMRI), a
characteristic pattern of frontoparietal activity is produced by many
different kinds of cognitive activity, includingperceptual discrimination,
resolution of response conflict, working memory storage/manipulation
and episodic memory encoding/retrieval (Duncan and Owen, 2000;
Nyberg et al., 2003; Dosenbach et al., 2006; Duncan, 2006). The pattern
incorporates the cortex around the inferior frontal sulcus (IFS), the
anterior insula/frontal operculum(AI/FO), the dorsal anterior cingulate/
pre-supplementary motor area (ACC/pre-SMA), and the intraparietal
sulcus (IPS). Given its generality, we have called this the multiple-
demand or MD pattern (Duncan, 2006).

It iswidely accepted that frontoparietal cortex is important in high-
level cognitive control. One proposal is that such control is exerted by
selective coding of task-relevant information. This selective fronto-
parietal representation may serve as a source of bias to other brain
systems, supporting related information processing (Desimone and
Duncan, 1995; Dehaene et al., 1998; Miller and Cohen, 2001). Several
strands of evidence suggest that MD regions can represent many
different kinds of task-relevant information. In monkey studies, the
activity of frontal and parietal cells codes various task features,
including stimuli, responses, rules and rewards (e.g. Niki and
Watanabe, 1976; Andersen et al., 1985; Sakagami and Niki, 1994;
Snyder et al., 1997; Asaad et al., 1998; Hoshi et al., 1998; White and
Wise, 1999; Wallis et al., 2001; Stoet and Snyder, 2004; Gail and
Andersen, 2006; Sigala et al., 2008).

In conventional fMRI the representational content ofMD regions has
been more difficult to determine, but the question can be examined
through multi-voxel pattern analysis (MVPA). In MVPA, information
coding is demonstrated by differences in the voxelwise pattern of
activity evoked by different events such as different visual stimuli or
different motor outputs (Haynes and Rees, 2006). Such differences
might arise through variation across voxels in the proportion of neurons
responding to different task events. In agreement with the monkey
literature, recent work using MVPA suggests that human frontoparietal
cortex can code a range of different types of information, including the
task-relevant features of moving dot figures (Li et al., 2007), and more
abstract task features such as intendedmathematical operation (Haynes
et al., 2007). In the current study, we used MVPA to assess the
representational content ofMD regionsduring a simple visual stimulus–
response task. Both in specific MD regions of interest and across the
whole brain, we examined coding of rules for transforming stimuli into
responses, and coding of individual stimulus-response alternatives.

On theonehand,wepredictedbroadcodingofdifferent task features
acrossMD regions. On the other, wewished to compare task features for
their relative strength of coding. The question is illustrated by a recent
single unit study ofmonkey prefrontal cortex (Sigala et al., 2008). In this
study, a cue at trial onset indicated the target picture for the current
trial; themonkey then watched a series of pictures and responded after
the target appeared. Analyzing the pattern of activity across a
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population of prefrontal cells, the authors asked how dissimilar activity
patterns were for different task events. They found good discrimination
between different task phases (cue, delay, and target), corresponding to
different cognitiveoperations required in thedifferent stages of the task,
and weaker discrimination of stimulus identity within each phase. In
our study, analogously, we compared coding of a general stimulus–
response mapping rule with coding of specific stimulus and response
identities.
Materials and methods

Participants

Seventeen participants (nine female, mean age=21.6, SD=4.12)
took part in this study and were reimbursed for their time.
Participants were right handed and had normal or corrected to
normal vision. All participants gave written informed consent to take
part. The study was approved by the Hertfordshire Local Research
Ethics Committee.
Fig. 1. There were two incompatible stimulus–response mappings between the four
stimulus positions and the four response keys. The background color of the screen
indicated which rule to use on the current trial: blue and yellow indicated rule one and
pink and green indicated rule two. Participants responded with the index and middle
finger of each hand.
Task design

On each trial the stimulus was a blue square measuring
approximately 2×2° presented on a projector and viewed through a
head-coil-mounted mirror in the scanner. It could appear in one of
four positions, indicated on the screen by four place holders. Place
holders were white squares with a black outline (2×2°), arranged in a
horizontal row in the center of the screen and separated by
approximately 1° edge to edge. Participants responded by pressing
one of four response keys using index and middle fingers from each
hand.

There were two incompatible stimulus–response mappings be-
tween the four stimulus positions and the four response keys (Fig. 1).
The current rule to use was indicated by the background color of the
screenwith two colors indicating each rule: blue and yellow indicated
rule one, and pink and green indicated rule two.

Participants learnt the rules and corresponding background colors
outside the scanner (rule 1 first) and practiced a mixture of the two
rules for approximately 10 min. They were instructed to respond as
quickly as possible without making any mistakes, and were shown
feedback (number of trials completed and percentage correct) after
each block of trials.
Acquisition

FMRI datawere acquired using a Siemens 3 T TimTrio scannerwith
a 12 channel head coil. We used a sequential descending T2*-
weighted echo planar imaging (EPI) acquisition sequence with the
following parameters: acquisition time 2000 ms; echo time 30 ms; 32
oblique axial slices with a slice thickness of 3.0 mm and a 0.75 mm
inter-slice gap; in plane resolution 3.0×3.0 mm; matrix 64×64; field
of view 192 mm; flip angle 78°. T1-weighted MPRAGE structural
images were also acquired for all participants (slice thickness 1.0 mm,
resolution 1.0×1.0×1.5 mm, field of view 256 mm, 160 slices).

We used an event related fMRI design in which the 16 stimuli (four
positions* four background colors) were presented in random order.
Stimuli remained visible until the participant responded. There was
an interval of 1000 ms between response and display of the
subsequent stimulus, during which the placeholders were visible
against a white background. Participants completed two runs of trials
in a single scanning session. Each run consisted of five short blocks of
trials, lasting 3 min each, with a 30 s gap between blocks. The total EPI
time was 34 min.
Analysis

Analyses examined four task features: rule, stimulus position,
response, and background color. Since position and response were
partially confounded in our design, we compared inner with outer
positions (which have equal contributions from each of the four
responses and each of the two rules) and inner with outer responses
(which have equal contributions from each of the four stimulus
positions, each of the two hands, and eachof the two rules). Background
colors were always compared within rule. Conventional univariate
analyses examined differences in overall activation evoked by different
rules, positions, responses, and colors. Multi-voxel pattern analysis
(MVPA) was used to discriminate fine grained activation patterns
associated with different positions, responses, rules and colors. As the
central aim of the current study was to investigate the representational
content of MD cortex, the main analyses focused on prefrontal and
parietal regions of interest (see below).Whole brain analyses were also
carriedoutusinga searchlightmethod inorder to identify any additional
regions showing task-relevant feature coding.

Pre-processing

Image realignment, slice timing correction and co-registration
to structural images was carried out using Automatic Analysis ver-
sion 2.0 for SPM5 (http://imaging.mrc-cbu.cam.ac.uk/imaging/
AutomaticAnalysisIntroduction). For univariate analyses, data
were additionally normalized using a segment and normalize rou-
tine (simultaneous grey/white matter segment and normalize) and
smoothed (10 mm FWHM Gaussian kernel) using the same soft-
ware. In all cases data were high pass filtered (128 s).
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Regions of interest (ROIs)

MD ROIs were defined using data from a prior review of activity
associated with a diverse set of cognitive demands (Duncan and
Owen, 2000). We used the kernel method described in Cusack et al.
(2010). To ensure symmetrical ROIs, all peaks from the original
review were first projected onto a single hemisphere. A point was
placed at the location of each peak and the resulting image was
smoothed (15 mm FWHM Gaussian kernel) and thresholded at 3.5
times the height of a single peak. The resulting regions were then
reflected onto the opposite hemisphere. A plane at the local minimum
was used to divide lateral prefrontal regions into amore dorsal part, in
and around the IFS, and amore ventral part, focused around the AI/FO.
The two left and right medial ROIs abutting each other at the midline
were unified into a single ACC/pre-SMA region. The procedure yielded
a total of seven ROIs (Fig. 2): left and right IFS (centre of mass+/−38
26 24, volume 17000 mm3); left and right AI/FO (+/−35 19 3,
3000 mm3); left and right IPS (+/−35 −58 41, 7000 mm3) and ACC/
pre-SMA (0 23 39, 21000 mm3). Four further ROIs were taken from
the Brodmann template provided with MRIcro (Rorden and Brett,
2000): left and right visual cortex (BA 17/18, centre of mass−13−81
3, 16−79 3, volume 54000 mm3) and left and right motor cortex (BA
4, −27 −23 60, 28 −23 60, 18000 mm3). All co-ordinates are given
in MNI152 space (McConnell Brain Imaging Centre, Montreal
Neurological Institute).

Univariate analyses

The univariate effects of rule, position, response, and color were
analyzed using the multiple regression approach of SPM5 (Wellcome
Department of Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.
uk). For each participant, beta values for the four stimulus positions,
four responses and four background colors were estimated in each of
the ten blocks. Movement parameters, block means, and run means
Fig. 2. Coding of rule, position, response and color in theMD ROIs. Bars represent t-score on a
level classification and positive values indicate above chance classification. Dotted line:
Bonferroni-corrected p-value of 0.0125. *pb0.05, **pb0.0125.
were included as covariates of no interest. Trials were modeled as
epochs lasting from stimulus onset until response, and each trial
contributed to the estimation of three betas (one stimulus position,
one response, and one background color). Error trials were excluded
from the analysis.

ROI analyses were carried out using the MarsBar toolbox for SPM5
(Brett et al., 2002). For each region, a mean time course was calculated
across voxels and effect sizes were estimated using themodel described
above. Effect sizes for eachparticipantwere thenused in a series of group
analyses. For the IFS, AI/FO and IPS ROIs, each task feature was analyzed
using a separate two-way repeated measures analysis of variance
(ANOVA), with task feature (e.g. rule) and hemisphere as factors. Since
the ACC/pre-SMAROIwas bilateral, data from this ROIwere entered into
a one-way ANOVA comparable to the one-sample t-tests used in the
whole brain analysis. To account for the four statistical tests that were
carried out for each task feature, we evaluated the results using a
Bonferroni adjusted significance threshold of p=0.0125. The two
additional ROIs (BA 4 and BA 17/18) were analyzed in the same way.
Since we had strong a priori hypotheses in these regions, we did not
adjust our significance threshold for these tests.

For whole brain analyses, contrasts were calculated for each
participant comparing the two rules, positions (inner vs. outer
positions), responses (inner vs. outer responses) and colors (yellow vs.
blue (rule 1) and pink vs. green (rule 2)). The contrasts for each
participantwere then entered into randomeffects analyses (one-sample
t-tests).

Multi-voxel pattern analyses

Multi-voxel pattern analyses were carried out using MultiVariate
Pattern Analysis in Python (PyMVPA) software (Hanke et al., 2008), in
which support vector machine classification (Vapnik, 1995) is imple-
mented by wrapping the LIBSVM library (Chih-Chung and Chih-Jen,
2001). We used a linear support vector machine, LinearCSVMC (http://
one-sample t-test of classification accuracy against chance. A score of 0 indicates chance
significance threshold p=0.05; solid line: significance threshold corresponding to

http://www.fil.ion.ucl.ac.uk
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Table 1
Percent correct and reaction time data for the four stimulus positions and responses in
rules 1 and 2.

Rule 1 Rule 2

Stimulus position 1 2 3 4 1 2 3 4
Response 2 1 4 3 4 3 2 1
Percent correct (%) 98 95 96 97 97 96 96 97
Reaction time (ms) 795 825 820 804 817 905 905 805

Stimulus and response positions are numbered from left to right (e.g. far left is stimulus
position 1).
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www.pymvpa.org/api/mvpa.clfs.svm.LinearCSVMC-class.html). Beta es-
timation and second level randomeffects analyseswere carried out using
SPM5 (Wellcome Department of Imaging Neuroscience, London, UK;
www.fil.ion.ucl.ac.uk).

Pattern analyses were carried out on ROI and whole brain bases. The
ROI analysis allowedus todirectly test ourhypothesis that theMDregions
code task-relevant information and events. The whole brain analysis
allowed us to identify any additional feature coding outside of the MD
system. For both analyses, 120 beta images (four stimulus positions, four
responses and four background colors in each of ten blocks) were
estimated for each participant with block and run means included as
covariates of no interest. As in univariate analysis, each trial wasmodeled
as an epoch lasting from stimulus onset until response, and each trial
contributed to the estimation of three betas. Error trials were excluded.

The ROI analysis of rule proceeded as follows. For each participant,
the eleven ROIs were deformed by applying the inverse of the
participant's normalization parameters. This allowed us to carry out
pattern classification analysis directly on the un-normalized data for
each participant. First, classification of rule was carried out separately
for each participant. For a given ROI, the pattern of beta values across
the relevant voxels was extracted from each of the 40 relevant beta
images (four color betas*10 blocks), yielding 40 multi-voxel vectors.
100% of the voxels in each ROI contributed to each vector, without
feature selection. The linear support vector machine was trained to
discriminate between the vectors pertaining to rule one and those
pertaining to rule two. We used a leave-one-out ten-fold splitter: the
classifier was trained using the data from nine of the ten blocks, and
was subsequently tested on its accuracy at classifying the unseen data
from the remaining block. This process was carried out in ten
iterations, using all ten possible combinations of train and test blocks.
The classification accuracies from the ten iterations were then
averaged to give a mean accuracy score for that participant.

The mean classification accuracy for each participant was then
entered into a second level analysis analogous to the univariate analyses
describedabove. In the IFS, AI/FOand IPSROIs, datawere averagedacross
hemisphere and entered into a one-sample t-test against the classifica-
tion accuracy expected by chance (50%). Paired t-tests examined any
difference in coding accuracy between hemispheres. Where differences
were found, post-hoc one-sample t-tests against chancewere carriedout
for each hemisphere separately. A one-sample t-test against chancewas
also used for the single ACC/pre-SMA ROI. All tests against chance were
one-tailed. We used a Bonferroni adjusted significance threshold
(p=0.0125) to account for the four MD regions tested.

The pipeline for the analyses of position and response was
identical to that for rule. The color analysis was similar, except that
classification of color was carried out within each rule separately.
Mean classification accuracy for color in rules one and two was then
entered into the second level analysis described above.

For regions where rule coding was statistically significant, a further
analysiswas included to eliminate the contribution of color coding to rule
classification. Since rule was indicated by background color, it was
possible that discrimination of colormight drive discriminationof rule. To
rule out this interpretation, we analyzed whether the rule discrimination
generalized across the pairs of colors. That is, we trained the classifier to
discriminate the two rules one using one set of colors (e.g. blue (rule one)
vs. pink (rule two)) and tested the classifier on its prediction of rule using
the other set of colors (e.g. yellow (rule one) vs. green (rule two)). This
analysis followed the procedure outlined above except that in this case, a
two-fold splitter (color set one vs. color set two) was used.

Finally, we compared the strength of rule coding to the other task
features in a series of two-way ANOVAs with factors task feature (e.g.
rule and position) and ROI (IFS, AI/FO, IPS, and ACC/pre-SMA; data for
the first 3 averaged across hemispheres).

In order to identify any additional regions coding task-relevant
information, whole brain pattern classification was carried out using a
roaming spotlight (Kriegeskorte et al., 2006). For each participant,
data were extracted from a spherical ROI (radius 5 mm) centered in
turn on each voxel in the brain. A linear support vector machine was
trained and tested as before, using data from each sphere, and the
classification accuracy value for that sphere was assigned to the
central voxel. This yielded whole brain classification accuracy maps
for each individual for each of the five effects of interest outlined
above. To combine data across individuals, classification accuracy
maps were normalized by applying the normalization parameters
extracted at the pre-processing stage of the univariate analyses, and
were subsequently smoothed using a 10 mm FWHM Gaussian kernel.
These images were entered into a one-sample t-test to identify voxels
where classification was significantly above chance.

Results

Average accuracies and reaction times for different stimulus/response
pairs within each rule are shown in Table 1. Overall participants
performed with a high degree of accuracy (M=97%, SD=0.02). There
were no differences in accuracy rates between the two rules or between
the inner and outer responses, but participants were more accurate in
responding to the outer stimulus positions compared to the inner
positions (t(16)=3.09, pb0.01). Reactions times were shorter in rule 1
compared to rule 2 (t(16)=3.84, pb0.01), for outer compared to inner
stimulus positions (t(16)=6.05, pb0.01), and for outer compared to
inner responses (t(16)=2.74, pb0.05). On average participants com-
pleted a total of 931 trials (SD=69.1) across the ten task blocks.

Univariate analyses

In MD ROIs, no main effects of rule, position, response or color
reached Bonferroni-corrected significance (Table 2). Sub threshold
trendswere seen for rule in the IPS (F(1, 16)=2.47, pb0.05), position in
the AI/FO (F(1, 16)=6.97, pb0.05), response in the IFS (F(1, 16)=4.58,
pb0.05) and colorwithin rule one in theAI/FO(F(1, 16)=6.06,pb0.05).
There was a significantmain effect of hemisphere in the IPS in the color
contrast for rule 2 (F(1, 16)=12.86, pb0.0125), reflecting increased
activation in the left compared to right IPS.

In BA 17/18 there were no significant main effects of task feature.
Activation tended to be greater in the left hemisphere, reflected by a
main effect of hemisphere in the ANOVA with rule (F(1, 16)=5.41,
pb0.05), response (F(1, 16)=5.44, pb0.05) position (F(1, 16)=5.45,
pb0.05) and color in rule 1 (F(1, 16)=4.73, pb0.05). There were no
significant task feature by hemisphere interactions. In BA 4 there were
no significant effects.

In the whole brain analyses, no voxels survived FDR correction for
any of the univariate contrasts (rule, position, response, color in rule 1,
and color in rule 2).

ROI based pattern classification

MD regions
We predicted broad coding of task features in the MD regions and

could assess differential coding of rule, position, response and color.

http://www.pymvpa.org/api/mvpa.clfs.svm.LinearCSVMC-class.html
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Table 2
Activation (difference in percent signal change) and F-scores for univariate effects in the MD ROIs.

IFS AI/FO IPS ACC/pre-SMA

Activation F Activation F Activation F Activation F

Rule 0.007 1.57 −0.002 0.07 0.015 2.47* 0.002 0.16
Position 0.009 2.09 0.015 6.97* 0.011 1.28 0.007 0.94
Response 0.010 4.58* 0.006 2.41 0.002 0.37 −0.001 0.03
Color (rule 1) 0.007 0.94 0.019 6.06* 0.011 1.21 0.008 1.07
Color (rule 2) 0.007 0.72 0.007 0.72 0.006 0.49 0.001 0.00

Except where indicated by a negative activation difference, there wasmore activation in rule 1 vs. rule 2, inner vs. outer positions, inner vs. outer responses, blue vs. yellow, and green
vs. pink. *pb0.05; no effects reached Bonferroni-corrected significance.
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For each region, Fig. 2 shows the coding of rule, position, response and
color, averaged where appropriate across the two hemispheres. Data
are presented as t-scores representing the reliability of above-chance
feature classification, and the solid line indicates the Bonferroni
adjusted significance threshold of p=0.0125. We report effects of p
greater than 0.0125 but less than 0.05 as sub threshold.

In the IFSwe found significant coding of rule (t(16)=3.38, pb0.0125,
mean classification accuracy M=56.2%), and sub threshold coding of
position (t(16)=2.42, pb0.05, M=54.7%). Response and color
coding were not significant (response: t(16)=0.52, p=0.31,
M=51.2%; color: t(16)=1.09, p=0.15, M=51.3%). Rule coding
was significantly stronger in the left IFS (t(16)=3.81, pb0.0125).
Separate t-tests in the left and right IFS revealed highly significant rule
coding in the left IFS (t(16)=4.69, pb0.001, M=59.3%), and a trend
towards rule coding in the right IFS (t(16)=1.52, p=0.07, M=53.1%).
Response coding was also significantly stronger in the left compared to
right IFS (t(16)=3.61,pb0.0125). Separate t-tests in the left and right IFS
revealed sub threshold coding of response in the left IFS (t(16)=1.90,
pb0.05,M=55.0%) and not in the right IFS (t(16)=−1.11,M=47.4%).
There were no other hemisphere effects (psN0.39).

The AI/FO showed significant coding of rule (t(16)=3.85, pb0.0125,
M=54.3%) and color within rule (t(16)=2.48, pb0.0125, M=52.8%).
There was no significant coding of position (t(16)=0.73, p=0.24,
M=51.4%) or response (t(16)=0.25, p=0.40, M=50.4%), and no
hemisphere effects (psN0.19).

The IPS showed significant coding of rule (t(16)=3.63, pb0.0125,
M=56.5%), and sub threshold coding of position (t(16)=2.32,
pb0.05,M=55.7%) and color (t 16=2.04, pb0.05,M=52.9%). Coding
of response was not significant (t(16)=1.03, p=0.16, M=51.9%),
and there were no hemispheric differences (psN0.16).

In the ACC/pre-SMA, coding of rule, position and response
approached significance (rule: t(16)=1.74, p=0.051, M=52.9%;
position: t(16)=1.60, p=0.06, M=53.8%; response: t(16)=1.55,
p=0.07, M=53.8%). There was no coding of color (t(16)=−0.87,
M=48.4%).

Regions showing significant coding of rule were subjected to a
further analysis to rule out the contribution of color to rule coding
(color cross-generalization analysis, see Materials and methods). Rule
coding was confirmed to be independent of color coding in all three
regions showing significant coding of rule: IFS (t(16)=2.72, pb0.01,
M=54.1%), AI/FO (t(16)=3.41, pb0.01, M=53.5%) and IPS (t(16)=
1.84, pb0.05, M=53.5%).

We compared the strength of rule coding to theother task features in
a series of two-way ANOVAs with factors task feature (e.g. rule and
position) and ROI (IFS, AI/FO, IPS, and ACC/pre-SMA; data for the first 3
averaged across hemispheres). Two significant main effects of task
feature indicated that theMD regions showedmore coding of rule than
response (F(1,16)=3.77, pb0.05 one-tailed) and more coding of rule
than color (F(1,16)=6.99, pb0.01 one-tailed). There was no main effect
of task feature for rule vs. position (F(1,16)=0.66, p=0.43). A further
comparison of rule and position, taking into account any hemispheric
difference, had factors task feature (rule and position), ROI (IFS, AI/FO
and IPS), and hemisphere (left and right). This revealed a task feature by
hemisphere interaction (F(1,16)=8.25, pb0.05). Coding of rule was
significantly greater than coding of position in the left hemisphere
(F(1,16)=7.42, pb0.01 one-tailed), and not in the right hemisphere
(F(1,16)=0.34, p=0.57). None of the analyses showed any significant
feature * region interactions (all psN0.17).

Overallwe sawabroadpattern of coding in theMDregions. Rulewas
themost strongly coded task feature (significant in three of the fourMD
regions, with a trend in the fourth), followed by color and position
which each showed significant or sub threshold coding in two regions,
and finally response, only showing sub threshold coding in the left IFS.
Comparing across regions, the representation of information in the IFS
and IPS was similar: rule was the most strongly represented feature in
these regions followed by position, color and finally response. The AI/FO
similarly showed numerically more coding of rule than any other task
feature.

Motor cortex and visual cortex
The motor cortex showed significant coding of response (t(16)=

3.59, pb0.01, M=57.2%). No other task features were coded signifi-
cantly, and there was no effect of hemisphere (psN0.21).

The visual cortex showed significant coding of the visual features of
the task: position (t(16)=3.50, pb0.01,M=59.3%) and color (t(16)=
3.60, pb0.01, M=55.9%). Surprisingly, the visual cortex also showed
significant coding of rule (t(16)=5.38, pb0.01, M=61.9%)
and response (t(16)=2.59, pb0.01, M=56.3%). The cross-generaliza-
tion analysis confirmed that rule coding was not driven by color coding
(t(16)=3.26, pb0.01, M=56.6%). There were no hemisphere effects
(psN0.10). An additional analysis in which the visual ROI was restricted
to BA 17 showed similar results. In this ROI we found significant coding
of all four task features (rule: t(16)=5.43, pb0.001, M=62.6%;
position: t(16)=3.74, pb0.001, M=60.0%; response t(16)=2.54,
pb0.05,M=55.1%; color t(16)=3.81, pb0.001,M=56.8%), significant
cross-generalization of rule between colors (t(16)=3.45, pb0.001,
M=57.9%), and no hemisphere effects (psN0.16).

Comparison of multi-voxel and univariate results
Comparison of Fig. 2 and Table 2 shows that the pattern of multi-

voxel effects did not tend to follow the pattern of univariate trends. This
suggests that the multi-voxel results did not depend only on univariate
trends. A supplementary analysis was carried out to clarify, for each
contrast, what proportion of the most discriminative voxels (defined as
voxels showing a univariate t-score greater than 1.5 or less than−1.5)
showed greater activation in the direction of the univariate trends. We
reasoned that if a substantial proportion of the more discriminative
voxels showed greater activation in the opposite direction to the
univariate trend (e.g. more activation to rule 1 than rule 2) this would
provide information to themulti-voxel classifier thatwouldbe averaged
out in theunivariate analysis. Broadly, a similarproportion of voxelswas
found at each end of the distribution (Supplementary Fig. 1). In theMD
regions, the proportion of the most discriminative voxels showing a
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preference in the direction of the univariate trend was 57.7% for rule,
60.5% for position, 56.2% for response and 54.1% for color.

Whole brain pattern classification
Whole brain MVPA analyses largely confirmed the ROI results

(Fig. 3, Table 3). To allow direct comparison between results, whole
brain analyses were thresholded at pb0.001 with an extent threshold
of 100 voxels.

Rule codingwas seen in an extensive region of the left lateral frontal
surface incorporating parts of the AI, FO and IFS (BA 45/47/44/6), the
right lateral frontal surface including right FO (BA 44), the ACC/pre-SMA
(BA 24/6), the posterior parietal cortex in both hemispheres including
the area around the IPS (BA 40/7), and the visual cortex (BA 17/18/19).
Additional areas of rule coding were found in the right middle and
superior and left inferior temporal lobe (BA 20/21/37/22). A broadly
similar pattern was seen in the cross-generalization whole brain
analysis (Supplementary Fig. 2).

Position coding (inner vs. outer position)was seen in the right visual
cortex (BA 17/18/19), and in the right parietal cortex including the
posterior IPS (BA 7). In the left hemisphere position coding was seen in
the visual cortex (BA 18).

Response coding (inner vs. outer response)was seen in left and right
motor, supplementary motor and somatosensory areas (BA 4/6/3), in
the left superior parietal lobe (BA 7), and in the visual cortices (BA 17/
18), particularly on the left.

Color coding was seen in the left visual cortex (BA 17/18), in the
precuneus at the midline (BA 7) and in a small region of the right IPS
(BA 7).

Discussion

In this studywe usedMVPA to investigate the brain's representation
of different types of task-relevant information.Of particular interestwas
a network of frontal and parietal MD regions encompassing the dorsal
Fig. 3. Coding of (A) rule, (B) position, (C) response and (D) color in whole brain MVPA. T
thresholded at pb0.001 (t=3.69). The t-threshold for FDR correction would have been t=
correction for color.
and ventral prefrontal cortex (IFS, AI/FO), intraparietal sulcus (IPS) and
the anterior cingulate/pre-supplementary motor area (ACC/pre-SMA).
We predicted a broad representation of the different task features, and
compared the representation of different task features across regions.

Across MD regions, stimulus–response mapping rule was the most
prominently coded task feature,with significant coding in IFS, AI/FO and
IPS, and an additional trend in the ACC/pre-SMA. In this experiment,
color was the cue indicating which rule to apply, and significant color
coding was seen in the AI/FO, with additional sub threshold coding in
the IPS. Coding of particular stimuli and responseswasweaker,with sub
threshold stimulus position coding in the IFS and IPS, and sub threshold
response coding only in the left IFS. Color information may have
contributed to rule coding in themain analysis, but rule codingwas still
widespread in the color cross-generalization analysis. The results show
strong MD coding of a general rule for transforming stimuli into
responses, with weaker coding of specific stimulus–response instances.

A number of univariate fMRI studies implicate the lateral prefrontal
cortex, IPS andACC/pre-SMA in the learning, retrieval,maintenance and
implementation of rules (MacDonald et al., 2000; Passingham et al.,
2000; Brass and vonCramon, 2002, 2004; Bunge et al., 2002, 2003, 2005;
Brass et al., 2003; Bunge, 2004; Cavina-Pratesi et al., 2006; Crone et al.,
2006; Donohue et al., 2008). For example, one such study showed
increased activation of lateral prefrontal cortex, pre-SMA, and inferior
and superior parietal cortex when participants maintained a set of
stimulus–response contingencies compared towhen theymaintained a
simple response plan (Bunge et al., 2003). Electrophysiological studies
in non-humanprimates also suggest that single frontal and parietal cells
code task rules of various kinds (Hoshi et al., 1998; White and Wise,
1999; Asaad et al., 2000;Wallis et al., 2001;Wallis andMiller, 2003). For
example, Asaad et al. (1998) found that the activity of 44% of prefrontal
neurons reflected the current mapping between a visual cue and the
appropriate response. The activity of single cells in the right posterior
parietal cortex has also been shown to reflect preparation of different
task rules (Stoet and Snyder, 2004, see also Gail and Andersen, 2006).
o ease comparison between whole brain results for the four task features, results are
2.50 for rule, t=4.54 for position, and t=3.75 for response. No voxels survived FDR



Table 3
Peak coding of rule, position, response and color in whole brain MVPA analyses.

Feature Lobe Cluster Representative peaks

Hemisphere Co-ordinates Brodmann Z-Score

X Y Z Area

Rule Frontal Lateral frontal surface Left −52 4 14 6 4.83
Left −44 40 −2 47 4.06
Left −42 28 18 45 3.96
Right 44 6 20 44 3.71

Supplementary motor area Right 4 −6 60 6 4.50
Anterior insula Left −38 22 2 3.88
Superior frontal lobe Left −22 −4 68 6 3.79

Parietal Inferior parietal lobe Left −52 −44 40 40 4.07
Intraparietal sulcus Right 28 −54 36 7 4.38
Precuneus Right 4 −54 58 5 3.98
Superior parietal lobe Left −20 −54 66 5 3.73

Left −18 −68 48 7 3.36
Postcentral gyrus Left −60 −32 30 2 3.66

Right 54 −26 44 3 3.69
Occipital Visual cortex Left −18 −76 2 18 5.15

Left −28 −88 −12 18 4.04
Right 6 −76 2 17 5.12
Right 32 −84 −4 19 3.79

Temporal Superior temporal sulcus Right 56 −22 −4 21 5.15
Middle temporal gyrus Right 56 −66 12 37 3.98
Inferior temporal gyrus Left −46 −46 −14 20 4.55

Position Occipitoparietal Visual cortex Left −30 −96 4 18 3.86
Right 30 −82 24 19 4.59
Right 44 −78 10 19 4.24

Precuneus Right 16 −68 46 7 4.46
Response Frontal Precentral gyrus Left −36 −30 64 4 3.78

Right 44 −20 50 4 5.10
Supplementary motor area Left −4 −8 52 6 4.64

Parietal Postcentral gyrus Left −46 −20 40 3 4.30
Superior parietal lobe Left −28 −50 60 7 4.13

Occipital Visual cortex Left −16 −84 8 17 3.61
Left −12 −80 −16 18 3.61

Color Occipitoparietal Early visual cortex Right 10 −94 16 18 4.75
Intraparietal sulcus Left −28 −60 38 7 3.84
Precuneus Left −6 −66 46 7 3.88

Right 2 −78 42 7 3.94

Results are thresholded at pb0.001, extent threshold=100 voxels. Large continuous clusters are summarized by representative peaks.
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RecentMVPA studies also implicate theMD regions in representing task
sets (HamptonandO'Doherty, 2007; Soon et al., 2008;BodeandHaynes,
2009), For example Bode and Haynes (2009) showed discrimination of
two stimulus–response mapping rules in the left IPS and ventral lateral
prefrontal cortex.Hereweextend this result to thebilateralMDnetwork
in amore complex stimulus–responsemapping task and show that rule
coding is abstracted across cues and across specific stimulus/response
instances. Consistent with previous results, our data suggest that the
pattern of activity in human frontoparietal cortex includes a strong
representation of stimulus–response mapping rule.

TheMDcodingof stimulus identity in ourdata is also in keepingwith
numerous monkey studies showing position coding by individual
prefrontal (Niki andWatanabe, 1976; Funahashi et al., 1989, 1993) and
posterior parietal neurons (Andersen et al., 1985; Chafee et al., 2007).
Response coding in the left IFS is also in line with data from individual
prefrontal neurons (Sakagami and Niki, 1994; Hasegawa et al., 1998;
Sakagami and Tsutsui, 1999).

For any multi-voxel discrimination, we might ask precisely what
aspect of twoeventsunderlies that discrimination. Inprincipal, themulti-
voxel discrimination of rule, for example, could reflect coding of the exact
stimulus–response mapping set, or could be based on discrimination of
another feature such as transformation across the midline. In this study
the two rules were well matched in several ways: both rules required
spatial transformation between a set of four stimulus positions and a set
of four finger responses, suppression of the dominant (spatially
compatible) response tendency and orienting within the same set of
spatial positions. Additionally our analyses demonstrate that discrimi-
nation of rule was not simply driven by differences in the background
colors used to cue rule. Nonetheless, future studies will be needed to
examine the precise factors that define rule representation.

In addition to the multi-voxel effects, there was an inconsistent
pattern of univariate trends. In the case of rule coding, there was a
trend towards more activation in rule 2 compared to rule 1 in the IPS
region. This may have contributed to the rule coding seen in this
region, since pattern analysis will also be sensitive to generalized
univariate differences in activation. One interpretation of the
univariate effect is that coding of rule is not only differential but
also biased. At the single cell level, discrimination of a task feature is
shown by a greater firing rate for one rule over another. If a population
contains more cells with a preference for rule A over rule B, then the
population code both discriminates and is biased towards one rule.
Similarly in our study, the multi-voxel pattern of activation may both
discriminate rule and show a bias towards a particular rule, leading to
a univariate difference between rules when the response of a region is
averaged across voxels. An alternative interpretation for the univar-
iate difference is a generalized effect such as increased “effort” in rule
two.Where both univariate andmultivariate differences exist, it is not
possible to determine whether the multi-voxel analysis discriminates
the content of each rule or a more general property such as difficulty.
That said, the univariate trends seen in our study were generally weak
and inconsistent. Moreover, the profile of univariate trends (Table 2)
did not tend to follow the pattern of multivariate effects (Fig. 2), and
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the supplementary analysis suggested a substantial proportion of the
most discriminative voxels showed a univariate difference in the
opposite direction to the global univariate trend (Supplementary
Fig. 1). For example, in the IPS, even though the average signal across
the region was higher for rule 2 than rule 1, a large proportion of
voxels showed the opposite pattern of activity, responding more
strongly to rule 1 than rule 2. The pattern of results suggests that even
in the regions where univariate trends were observed, the multivar-
iate discriminations did not arise solely due to non-specific factors
such as differences in task difficulty.

The visual cortex (BA 17/18) showed strong coding of the visual
features of the task (position and color), as expected. Intriguingly, the
visual cortex also showed representation of response and rule. This
finding was manifest in both ROI and whole brain analyses, and
remained present even when the visual ROI was restricted to BA 17.
Our response analysis (inner vs. outer response) was not confounded
with position, nor could it be driven by a generalized hemisphere
effect due to the hand used to respond. One possibility is that this
apparent response code reflects feedback from frontoparietal or
motor areas. Interestingly, response coding has recently been seen in
visual cortices in the macaque (Mirabella et al., 2007). In this data set,
the firing rate of 29% of visually responsive cells in area V4 reflected
which of two responses would be given. Similar considerations apply
to the coding of rule. Since each rule was equally associated with each
of the four positions and the four responses, coding of position or
response alone could not drive the classification of rule. The cross-
generalization analysis further confirmed that rule coding in this ROI
was not driven by color coding. Intriguingly, Mirabella and colleagues
(2007) also found evidence of rule coding in the visual cortex: the
activity of 50% of visually responsive V4 cells recorded was modulated
by which of two visual tasks the monkey was performing.

A possible issue arises for regions such as the visual cortex where
codingof all three task features (position, rule andresponse)wasseen. In
our design, the combination of any two features also gives the third: the
combination of position and rule information defines the required
response, the combination of position and response defines the rule, and
the combination of rule and response defines position. A general
possibility is that classification of any one feature might be based on
activity discriminating the other two, for example if unique patterns of
activity were strongly driven by specific conjunctions of features (e.g.
position1plus response2). This is especially relevant for interpreting the
pattern of effects in the visual cortex where all three task features were
coded. Further work will be needed to assess the possibility of apparent
coding of a third feature based on the combination of the other two.

In individual MD regions, we did not see simultaneous coding of all
task features. However, our data do suggest that in some cases more
than one task feature may be represented simultaneously. For example,
the AI/FO showed both significant coding of color and significant cross-
generalization across colors within the same rule. Given the relatively
poor spatial resolution of fMRI, it is not possible to establish whether
these features are coded by distinct neural populations, or whether the
activity of overlapping populations of cells codes multiple stimulus
features. In the visual system it has been suggested that information is
represented on a columnar basis (Haynes and Rees, 2005; Kamitani and
Tong, 2005), and a similar organization may also be present in the MD
network. Conceivably, the extent to which cells with similar response
profiles are clustered together will affect the extent to which fMRI is
sensitive to the distinctions those cells code, perhaps contributing to
differences in overall classification accuracies between brain regions.
However, to be compatible with the role of these regions as multiple-
demand processing areas, we would not expect the functional
organization of the MD regions to be fixed. Rather we might speculate
that the spatial organization of information in theMD regions would be
flexible, adapting to represent the information relevant to the current
task. The spatial origin of multi-voxel patterns in the MD regions
provides an interesting avenue for further research.
In this study we have demonstrated multi-voxel representation of
several task features in human frontoparietal cortex. The represen-
tation of multiple features was broadly spread across the MD regions,
with strong representation of stimulus–response mapping rules and
weaker representation of individual stimulus–response instances. The
AI/FO coded rule and color, the IPS coded rule, color and position, and
the IFS coded rule, position and (in the left hemisphere) response.
Together the MD regions combine to represent all the task features
needed to support appropriate behavior.
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